
Adapting Natural Language
Processing and Deep Learning

Tools to an end-to-end Day
Trading System

Enrique Alejandro González Amador

School of Computing Science
Sir Alwyn Williams Building

University of Glasgow
G12 8QQ

A dissertation presented in part fulfilment of the
requirements of the Degree of Master of Science at The

University of Glasgow

5th September 2025

Abstract

Stock prediction has been extensively studied, and researchers and investors
continually leverage state-of-the-art techniques to gain a competitive edge. Day
trading remains especially challenging due to market volatility and the noise
that must be filtered to extract predictive signals for trading decisions. This
project develops an end-to-end system combining deep learning and natural lan-
guage processing techniques with a robust staking and risk management strat-
egy. Experiments, including evaluations and investment simulations, showed
that significant feature engineering would be required to integrate tweet-derived
market data with stock technical indicators. Moreover, since tweet data were
not available for every trading day, models using only technical indicators con-
sistently outperformed those including tweet features. Nevertheless, the end-to-
end system achieved returns of 1.61% over one hundred trading days, providing
a foundation for further development into a competitive day trading approach.

Education Use Consent
I hereby give my permission for this project to be shown to other University of
Glasgow students and to be distributed in an electronic format. Please note
that you are under no obligation to sign this declaration, but doing so
would help future students.

Name: Signature:

AI Usage Declaration

In preparing this dissertation, I made use of Artificial Intelligence (AI) tools in
the following ways:

• For code augmentation and writing aid with respect to style and correct-
ness.

• For generating summaries and supporting the initial exploration of topic
literature.

All ideas, arguments, analyses, and conclusions presented in this dissertation
are entirely my own. I have complete knowledge and understanding of all source
code and text included.

My use of AI has been in full compliance with the University of Glasgow’s policy
on the ethical and transparent use of AI in academic work. At no stage has AI
been used as a substitute for my own critical thinking, evaluation of sources, or
the formation of arguments and conclusions.

Acknowledgements

My sincere gratitude to my supervisor, Joemon Jose, for their guidance and sup-
port throughout this project.

Thanks also to the Ministry of Science, Humanities, Technology and Innovation
of Mexico, which continues to create opportunities for Mexicans to go abroad to
the top academic circles worldwide. Without their funding, none of this would
have been possible.

To the School of Computing Science and the department in charge of the Univer-
sity’s cluster, for graciously allowing me to use the hardware and infrastructure
which allowed me to produce the results showcased on this report.

Lastly, to my friends, family and loved ones, who always cheer me on to keep
going.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Purpose . 1

1.3 Report Structure . 2

2 Background 4

2.1 Framing the Stock Prediction Task 4

2.1.1 Data Modalities and Model Selection 5

2.2 Deep Learning: long short-term memory (LSTM) 5

2.3 Natural Language Processing: BERT 6

2.4 Staking Strategies: Kelly Criterion 7

2.5 Statistical Inference: Isotonic Regression 8

2.6 Project Aims . 10

2.6.1 Research Objectives . 10

2.6.2 Research Questions . 11

3 Design & Implementation 12

3.1 Design Rationale & Architecture . 12

3.2 Data Acquisition and Pre-processing 13

3.2.1 Dataset Selection . 13

3.2.2 Dataset Pre-processing . 13

3.3 Feature Engineering . 15

3.3.1 Technical Indicator Generation from Stock Data 15

3.3.2 NLP Feature Extraction from Social Media 16

3.4 Final Dataset . 17

3.5 Model Evaluation and Metric Tracking 18

3.6 Investment Simulation Pipeline . 21

3.6.1 Dynamic Data Handling and Robustness 21

3.6.2 Per-Asset Modeling and Probability Calibration 22

3.6.3 Portfolio Construction and Capital Allocation 22

3.6.4 Simulation Loop and Performance Tracking 24

3.7 Implementation Details . 24

3.7.1 Libraries and Modules by Functionality 24

4 Experiments & Results 27

4.1 Evaluation metrics . 27

4.2 Model Comparison . 28

4.3 Impact of feature selection in model performance 29

4.4 Model comparison to baseline and previous work 30

4.5 Simulation performance . 30

5 Conclusions 32

5.1 Achievements . 32

5.2 Limitations and Future work . 33

A Source Code 37

B Additional Tables 38

Chapter 1: Introduction

1.1 Motivation
Stock market investment has long been a research area of big interest, attract-
ing both academia for its complex dynamics and the financial industry for its
potential for profit. The central problem within this domain, particularly for
short-term strategies like day trading—where positions must be closed on the
same trading day—is the accurate prediction of stock price movements. This is
a formidable challenge, as day trading environments are characterized by high
volatility and a low signal-to-noise ratio, making it incredibly difficult to extract
clear, predictive signals from the vast amount of available data. To tackle this
problem, researchers and practitioners have traditionally relied on two primary
sources of information:

1. Quantitative Historical Data: This includes historical stock prices (open,
high, low, close) and trading volumes. This structured data forms the ba-
sis of technical analysis, where indicators like moving averages and the
Relative Strength Index (RSI) are used to identify patterns and trends.
The rationale for using this data is that historical price action can often be
indicative of future movements. However, a significant limitation is that
these indicators are inherently backward-looking and may fail to capture
sudden shifts in market dynamics driven by new information.

2. Unstructured Textual Data: With the rise of social media, platforms like
Twitter have become a vast, real-time repository of public opinion and sen-
timent. This alternative data source offers the potential to capture the
forward-looking ”market mood” that often precedes price movements. The
intuition is that collective sentiment can be a powerful driver of short-term
market behavior. The challenge, however, lies in a different kind of noise:
extracting meaningful investment signals from millions of informal, often
irrelevant, tweets is a complex Natural Language Processing (NLP) task.

This project is motivated by the hypothesis that a more robust and accurate
prediction model can be built by synergistically combining these two disparate
data types. By integrating traditional, backward-looking technical indicators
with real-time, forward-looking sentiment signals from social media, we aim to
develop an end-to-end trading system that can better navigate the noisy envi-
ronment of day trading. The development of such a system requires not only
sophisticated predictive models but also robust risk management strategies to
create a consistently profitable approach.

1.2 Purpose
The primary aim of this project is to develop and evaluate an end-to-end day
trading system that integrates deep learning models with Natural Language

1

Processing (NLP) techniques. This project uses the work of ”Stock movement
prediction from tweets and historical prices” from Xu and Cohen [2018] as a
starting point. However, this project is focused on having a more basic predict-
ing model and embedding it on a complete, automated pipeline that includes a
robust risk and capital allocation strategy to determine the viability of such an
approach.

Specifically, this report details the investigation into whether sentiment, emo-
tion, and stance signals—extracted from tweets using BERT-based models—can
be effectively leveraged alongside traditional technical indicators to improve the
predictive accuracy of an LSTM-based model. The ultimate goal is to deter-
mine if this integrated system can achieve positive returns in a realistic, simu-
lated trading environment by using the Kelly Criterion for position sizing and a
sector-based portfolio construction method.

To address this, the system incorporates two key principles:

• Optimal Position Sizing using the Kelly Criterion: Rather than investing a
fixed amount, the system uses the Kelly Criterion to dynamically size each
trade. The rationale for this choice is that the Kelly Criterion provides a
mathematically rigorous framework for maximizing growth rate of capital.
By basing investment size on the model’s predicted probability of success
and the historical payout ratio, it balances risk and reward, helping to
prevent losses associated with over-leveraging. A conservative ”Fractional
Kelly” approach is used to further mitigate risk.

• Diversification through Sector-Based Selection: To avoid concentrating risk
in a single industry, the system employs a sector-based portfolio construc-
tion method. This strategy involves selecting the most promising trade
from different market sectors each day. This enforces diversification, re-
ducing the portfolio’s vulnerability to adverse events affecting a specific
sector and leading to more stability and resilience to market changes.

To give structure to the investigation, the project is guided by the following ob-
jectives:

• Objective 1: Comprehensive Feature Engineering
• Objective 2: Predictive Model Development and Evaluation
• Objective 3: End-to-End System Implementation

The complete discussion of the research objectives is continued on chapter 2.

1.3 Report Structure
This dissertation is organized into five chapters. Chapter 2, Background, re-
views the core technologies and theoretical concepts underpinning this project,
including Long Short-Term Memory (LSTM) networks, BERT, the Kelly Crite-
rion, and Isotonic Regression. It also formally states the project’s research objec-
tives and questions. Chapter 3, Design & Implementation, provides a detailed
description of the system architecture, the data processing pipeline, the feature
engineering process for both stock and tweet data, and the design of the in-
vestment simulation framework. Chapter 4, Experiments & Results, presents
the empirical findings of the study. It includes a comparison of different model

2

architectures, an analysis of the impact of various feature sets on predictive per-
formance, and a detailed report on the profitability of the end-to-end simulation.
Chapter 5, Conclusions, summarizes the key achievements of the project in re-
lation to the initial research questions, discusses the limitations encountered
during the study, and proposes directions for future work.

3

Chapter 2: Background

This chapter will go over the multidisciplinary approach of this project. The fol-
lowing sections will cover fundamental knowledge required to understand the
core technological and theoretical components . These components are drawn
from the fields of deep learning, natural language processing, quantitative fi-
nance, and statistical inference.

After laying the groundwork on which this project is built, the later sections will
explain the main objectives and the research questions answered throughout
the implementation and experimentation of this dissertation.

2.1 Framing the Stock Prediction Task
Predicting stock market movements can be framed in several ways, each with
distinct practical implications for a trading system. The choice of task fun-
damentally dictates the model architecture, evaluation metrics, and how the
model’s output is translated into an actionable trading decision. The primary
prediction tasks in this domain are:

• Price Prediction (Regression): The approach here is to predict the ex-
act closing price of a stock for the next trading day. While conceptually
simple, this is an extremely difficult regression task due to the market’s
high volatility and non-stationary nature. Models are optimized to mini-
mize price-distance errors (e.g., Mean Squared Error), which does not al-
ways align with maximizing profitability, as a small price error can still
lead to a wrong directional decision.

• Movement Prediction (Classification): A model can also be constructed
as a binary classification task: will the stock price go up or down? This sim-
plifies the problem by focusing on directional accuracy, which is the most
critical factor for profitability in many trading strategies.

• Return Prediction (Regression): A variation of price prediction is to
predict the percentage return or the log magnitude of the change of a stock.
This task is often preferred as returns are more stationary than raw prices.
The output, a continuous value, can be used to estimate both the direction
and the potential magnitude of a move.

For this project, we focus on the Movement Prediction (Classification) and
Return Prediction (Regression) tasks. The primary goal is classification, as
it directly informs the binary decision to buy or abstain from trading. The re-
gression task serves as an alternative approach where the predicted return is
converted into a directional signal, allowing for a direct comparison of which
framing yields better practical results. This dual-task evaluation allows us to
determine whether predicting the magnitude of a move adds valuable informa-
tion or simply introduces unnecessary complexity.

4

2.1.1 Data Modalities and Model Selection

The data used to tackle these prediction tasks comes in two distinct forms, each
requiring a specialized type of deep learning model:

1. Sequential Time-Series Data: The historical stock prices and their de-
rived technical indicators form a sequence where the order of data points
is critical. Past values are used to predict future ones, making this a clas-
sic time-series forecasting problem. Long Short-Term Memory (LSTM)
networks are exceptionally well-suited for this type of data. Their ar-
chitecture is explicitly designed with memory cells and gates to capture
long-range dependencies and temporal patterns, which are fundamental
to technical analysis.

2. Unstructured Textual Data: Social media posts, such as tweets, are un-
structured sequences of words. The primary challenge is to extract seman-
tic meaning, sentiment, and context from this raw text. Bidirectional
Encoder Representations from Transformers (BERT) and similar
transformer-based models are the state-of-the-art for such Natural Lan-
guage Processing (NLP) tasks. Pre-trained on vast text corpora, BERT ex-
cels at understanding linguistic nuances and context, allowing it to trans-
form a noisy tweet into a structured set of features (e.g., sentiment scores
or stance classification) that can be integrated with the time-series data.

This project will take advantage of LSTMs for temporal data and BERT for the
semantic, textual data. By using this dual approach, we aim to create a more
comprehensive view of the market than either data source could provide alone.

2.2 Deep Learning: long short-term memory (LSTM)
Time series prediction is a challenging area of Machine Learning and Deep
Learning ([Lai et al., 2018]; [Lim and Zohren, 2021]). Traditional recurrent
neural networks (RNNs) can theoretically keep track of dependencies and re-
lationships during training trough the use of backpropagation, where the RNN
calculates the gradient of the loss function with respect to its weights one layer
at a time, iterating backwards till the calculation reaches the first layer; the
RNN would use this calculation to further adjust its weights and achieve a lower
loss. By understanding ’learning’ as an optimization problem ([Rumelhart et al.,
1986]), backpropagation became a commonly used tool for traditional RNNs in
deep learning.

However, as neural networks grew in size and depth, the nature of the backprop-
agation process introduced a significant hurdle when training recurrent neural
networks([Hochreiter, 1991]). In the vanishing gradient problem, small number
multiplication makes the gradients in the backpropagation calculations increas-
ingly small, exponentially approaching zero, causing the training to slow down
or even halt completely. This problem of RNNs became a research area that
led to several advancements([Hochreiter and Schmidhuber, 1997]; [Kolen and
Kremer, 2001]).

5

Figure 2.1: LSTM Cell Diagram

Introduced in 1997 ([Hochreiter and Schmidhuber, 1997]), long short-term mem-
ory (LSTM) neural networks were proposed as a solution to the vanishing gradi-
ent problem. By employing a sophisticated system of cell states and gates, LSTM
networks can keep track of dependencies and relationships in long sequences of
data without running into the vanishing gradient problem, which makes them
effective for time series forecasting and prediction.

LSTM neural networks are at the core of the system developed for this project.
The prediction models used in both the testing and the final simulation pipeline
are used to run either classification or regression models. The models are trained
on a large section of the composite dataset and finetuned to create predictions
for the remaining of the data, which will be used for evaluation of performance
and the investment simulations.

2.3 Natural Language Processing: BERT
Since this project involves the analysis of large datasets containing text mes-
sages (the tweet dataset), there is a need to understand how the text classifi-
cation tools that will be used on this project came about, and how the field of
Natural Language Processing (NLP) has progressed up to this point.

Early work in the language processing field was heavily based on pattern and
rule matching, trying to encode linguistic rules into early computing systems.
Works in machine intelligence ([Turing, 1950]) and linguistics ([Chomsky, 1957])
defined the approaches taken to try an emulate language tasks such as conver-
sational agents and machine translation. An example that displays the cul-
mination of this approaches into a computer chat-bot is ELIZA ([Weizenbaum,
1966]), groundbreaking for the time but is considered rudimentary by today’s
standards.

When the limitations of rule based systems became apparent, the field moved on
into statistical approaches([Brown et al., 1990]; [Manning and Schütze, 1999]).
N-gram and Hidden Markov models (HMVs) became the state of the art tech-
niques for tasks such as part-of-speech tagging and machine translation tasks.

As the field continued to advance the introduction of early deep learning tech-
niques allowed for further advancement on the field of NLP. The introduction
of the first neural language models ([Bengio et al., 2003]), the introduction and

6

Figure 2.2: High-level schematic diagram of BERT ([Godoy, 2022]).

popularization of word embeddings ([Mikolov et al., 2013]) and the usage of RNN
and LSTM for tasks such as machine translation ([Sutskever et al., 2014]) as it
became the state-of-the-art before the introduction of transformers.

This historical overview leads to the introduction of BERT. Shortly after the in-
troduction of the transformer architecture in 2017([Vaswani et al., 2017]), a new
model that built upon this architecture was introduced. BERT, which stands
for Bidirectional Encoder Representations from Transformers, significantly ad-
vanced the ability of computers to process human language and generate text.
Introduced in 2018 ([Devlin et al., 2018]), BERT brought about significant im-
provements in a variety of NLP tasks such as text classification. As a pre-trained
model, it has already been trained on a large corpus of text. This allows the
model to be used directly or to be fine-tuned on smaller, task-specific datasets.

To capture semantic and contextual information from tweets, the system em-
ploys several pre-trained BERT-based language models. Each model is fine-
tuned for text classification (e.g., sentiment, stance, or emotion). The result-
ing classification outputs (such as probabilities or embeddings) are then used as
features that serve as inputs to subsequent deep learning tasks.

This approach leverages the linguistic knowledge already encoded in large pre-
trained models, while transforming raw text into structured, high-level repre-
sentations suitable for downstream models. Combining multiple BERT variants
enables the generation of diverse feature sets, which can improve robustness
and performance compared to relying on a single model.

2.4 Staking Strategies: Kelly Criterion
For any investor or gambler, determining the optimal amount of capital to allo-
cate to an opportunity is a fundamental aspect of a successful strategy. Go too
small, and potential returns are needlessly diminished; risk too much, and the
threat of ruin looms large. The Kelly Criterion offers a mathematical solution to
this dilemma, providing a formula for sizing positions to maximize the long-term
growth rate of assets. Developed by John L. Kelly Jr. in 1956, the criterion pro-
vides a disciplined framework that balances the probability of success with the
potential returns, a tool that has been embraced in fields ranging from sports
betting to sophisticated investment management.

Developed originally as a way to analyze long-distance telephone signal noise

7

([Kelly, 1956]), the Kelly Criterion’s potential applications for gambling and in-
vestment were quickly recognized. The general form for the Kelly Criterion,
assuming a loss of the full wager with every bet lost, is defined as:

f∗ = p− q

b
= p− 1− p

b
(2.1)

where:

• f∗ is the fraction of the current bankroll to wager.
• p is the probability of a win.
• q = 1− p is the probability of a loss.
• b is the proportion of the bet gained with a win.

This general form of the formula is intuitive to understand and was rigorously
proven in its original paper. However, the original formulation did not account
for the specifics of investment returns; to address this, different formulations
were made to account for continuous returns and other factors ([Thorp, 2008];
[Rotando and Thorp, 1992]). For the purpose of investment, the formula for the
Kelly Criterion can be adapted as:

f∗ =
p

l
− q

g
(2.2)

where:

• f∗ is the fraction of the assets to apply to the stock or security.
• p is the probability that the investment increases in value.
• q is the probability that the investment decreases in value.
• g is the fraction that is gained in a positive outcome.

There are two main problems with using the Kelly Criterion for investments
with probabilities informed by a deep learning model. First, even if we tune
our LSTM network to output a value between zero and one (which would mimic
traditional probability), this is not an actual probability, just the confidence es-
timation from the model of wether of not the stock will go up or down based on
the patterns learned from training data and the input of today. Second, for the
Kelly Criterion to hold true in investment scenarios, we must know how much
the stock being traded will go up or down. This information is almost always
unknown and it can only be estimated based on historical data. In later sec-
tions, the strategies and tools chosen to mitigate this limitations will be further
explained.

2.5 Statistical Inference: Isotonic Regression
As mentioned in the deep learning overview of this report, even if we tune a
deep learning model to output results of model confidence as a number between
zero and one in accordance with Kolmogorov Axioms of probability ([von Plato,

8

Figure 2.3: 3D figure representing the optimal Kelly bet size on the vertical axis
([Commons, 2025]).

1933]), we are not actually getting the probability of the predicted stock to go
up or down, the model is simply giving its degree of confidence based on its
training data and the learned patterns encoded in its weights. This becomes
problematic since the Kelly Criterion requires the probability to be known in
order to maximize the expected returns in the long run. Even assuming a clean
and sufficiently large dataset and an optimal model, it is unrealistic to expect
its predictions to be analogous to true probability.

In order to address this problem, this project makes use of isotonic regression
as an intermediate step between the classifier score and the staking calculation.
Isotonic Regression was introduced alongside its cornerstone algorithm, the Pool
Adjacent Violators Algorithm (PAVA). Both introduced in the same paper ([Ayer
et al., 1955]), they became a tool used in many fields for their flexibility.

Functionally, isotonic regression fits a line into a sequence of data points such
that the fitted line is non-decreasing (or non-increasing) at all points, while re-
maining as close to the observations as possible ([Fielding, 1974]). The strength
of the technique lies in its ability to correct monotonic distortions as well as its
non-linearity.

In 2002, it was first shown that probability calibration using isotonic regression
could be used for classification problems in the context of machine learning with
satisfactory results ([Zadrozny and Elkan, 2002]). The paper clearly articulates
how isotonic regression works well for both binary and multiclass classification
problems as well as showing several advantages compared to other calibration
methods, particularly its non-parametric nature. The experimental results ul-
timately showed the benefits of using calibrated probabilities instead of taking
the classifiers scores at face value, since these are more often than not, uncali-
brated.

9

Figure 2.4: Isotonic regression (solid red line) compared to linear regression on
the same data, both fit to minimize the mean squared error ([Commons, 2020]).

2.6 Project Aims
This chapter outlines the primary aims of the research project. At its core, this
project seeks to investigate whether integrating Natural Language Processing
(NLP) features derived from social media with traditional financial data can en-
hance the accuracy of stock movement prediction. To provide a clear path for
this investigation, the project is structured around a set of specific research ob-
jectives and seeks to provide an answer to a set of research questions. The objec-
tives detail the technical steps from feature engineering and model evaluation to
the development of an investment simulation pipeline, while the research ques-
tions target the central hypotheses regarding the utility of NLP features and the
practical viability of the proposed system.

2.6.1 Research Objectives

• Objective 1: Stocks and tweets feature engineering
– Extract technical indicators (e.g., moving averages, RSI, MACD, volatil-

ity) from stock price data.
– Perform sentiment analysis, stance detection and emotion analysis on

tweets related to the stocks.
– Align and aggregate stock features with tweet-derived features on a

common time scale.
– Run tests using combinations of features to understand the impact of

the engineered features
• Objective 2: Model and features testing and evaluation

– Design an environment to test different deep learning architectures.
– Compare results to baselines such as ARIMA and previous other rele-

vant stock prediction papers ([Xu and Cohen, 2018]; [Hu et al., 2018])
– Evaluate predictive performance using metrics such as accuracy, F1-

score, RMSE, and Matthews coefficient.
• Objective 3: Creation of an investment simulation pipeline

10

– Design a framework to simulate trading strategies based on model
predictions.

– Implement a staking strategy using the Kelly Criterion and other risk
management techniques.

– Assess profitability and risk through performance metrics (e.g., cumu-
lative returns, Sharpe ratio).

2.6.2 Research Questions

• How does the integration of NLP-derived features—specifically financial
stance, general sentiment, and emotion—impact the directional accuracy
of a BiLSTM model for next-day stock price prediction compared to a model
using only historical price and volume data?

• Among different NLP features, which provides the most utility for stock
movement prediction? Specifically, how does a domain-specific ”stance”
feature compare to general-purpose ”sentiment” and multi-class ”emotion”
features when combined with technical indicators?

• Can an end-to-end trading system, leveraging calibrated BiLSTM predic-
tions and a Fractional Kelly Criterion for capital allocation, achieve posi-
tive returns in a simulated environment? How does its performance com-
pare across models with and without NLP features?

• Is the predictive performance of the BiLSTM models consistent across dif-
ferent market sectors and individual stocks? Are there specific tickers or
sectors where the models consistently succeed or fail?

11

Chapter 3: Design & Implementation

This chapter covers the design decisions, methodological approach and imple-
mentation of the end-to-end trading simulator, as well as the necessary pre-
processing, feature engineering and model evaluation stages. First, we will de-
scribe the design behind its modular components. Then, we will cover the data
acquisition, pre-processing and feature engineering stages. Lastly, this chapter
will describe the implementation of the evaluation program and the investment
simulation program that will test the real-world viability of the proposed strat-
egy, including specific implementation details where necessary.

3.1 Design Rationale & Architecture
All the sections developed for the project are designed with a modular, multi-
stage approach to allow flexibility for scenarios where multiple models with dif-
ferent configurations need to be tested in succession. In principle, each compo-
nent should take a given input, do its independent operations and produce an
output that can be taken as is by the next module in the chain.

Figure 3.1: High level logic of the System’s architecture.

This separation is a deliberate design choice. The benchmarking and model
testing pipeline is an offline framework designed for rapid, systematic exper-
imentation. It allows for the evaluation of different feature sets, data process-
ing techniques, and model architectures without having to make any significant
changes for each experiment. This is crucial for iterating on the predictive com-
ponent of the system efficiently.

Conversely, the Day Trading Simulation Pipeline is a system designed to
closely mimic a real-world trading environment. It operates chronologically, us-
ing only the data available up to a given day to make decisions, thereby avoid-
ing lookahead bias. This pipeline integrates the best-performing model from the
benchmarking stage with risk management and portfolio construction logic to
provide a robust assessment of the strategy’s profitability. The modularity en-
sures that the predictive model can be updated or replaced without altering the
core simulation and risk management logic.

Both modules (evaluation and simulation) are designed to take the same par-
quet files containing the stock and tweet data already pre-processed. And all

12

configuration are declared on global parameters declared on a single space in
the code, making experimentation and iteration a straightforward process.

3.2 Data Acquisition and Pre-processing

3.2.1 Dataset Selection

All the data used in both the evaluation and simulation stages of the project
comes from the Stocknet dataset, originally introduced in the work of Xu and
Cohen [2018].

The Stocknet dataset provides a comprehensive benchmark for the task of stock
movement prediction by integrating both financial market data and social media
signals. It covers a two-year period from January 1, 2014 to January 1, 2016,
and includes a total of 88 target stocks. The selection procedure follows the
approach outlined by Xu and Cohen [2018]: all eight stocks in the Conglomerates
sector are included, while in each of the remaining eight sectors the ten largest
firms by market capitalization are selected. This ensures both sectoral diversity
and sufficient representation of highly traded firms. The complete list of stocks
is reported in the appendix of the original paper and on the github repository
where the dataset is hosted.

The dataset consists of two main components: tweet data, collected from Twit-
ter, and price data, retrieved from Yahoo Finance. For both components, the
repository provides raw and preprocessed versions, organized by stock ticker.

• Tweet data:
– Raw format: JSON objects following the standard Twitter API struc-

ture.
– Preprocessed format: JSON files containing the keys text, user_-
id_str, and created_at.

• Price data:
– Raw format: CSV files with daily entries including date, open, high,

low, close, adjusted close prices, and volume.
– Preprocessed format: TXT files with daily entries containing the date,

percentage movement, normalized open, high, low, and close prices,
as well as volume.

By combining market signals with large-scale social media data, the Stocknet
dataset enables research on multimodal approaches to financial prediction. Its
design facilitates the study of temporally-dependent relationships between un-
structured text and structured price series, making it particularly suitable for
the purposes of this project.

3.2.2 Dataset Pre-processing

The initial Stocknet dataset, while comprehensive, requires significant prepro-
cessing to transform its raw components into a format suitable for machine
learning models. This phase involves loading heterogeneous data sources, clean-
ing textual data to remove noise, and structuring the final datasets for subse-
quent feature engineering and model training stages. The process is executed
across several sequential notebooks.

13

First, the raw price and tweet data are loaded and consolidated. The price data,
originally stored in separate CSV files for each of the 88 tickers, is read into
memory, combined into a single tidy pandas DataFrame, and then saved in the
efficient Parquet format as stock_prices.parquet. Similarly, the tweet data,
distributed across a nested directory structure of JSON files, is parsed to extract
key fields—namely the ticker, tweet text, creation timestamp, and user ID. This
consolidated tweet data is then saved as stock_tweets.parquet.

The core of the pre-processing work focuses on sanitizing the tweet text. An
initial cleaning function is applied to each tweet to eliminate common social
media artifacts that provide little semantic value for sentiment analysis. This
step removes URLs, user mentions (e.g., @username), hashtags, stock cashtags
(e.g., $TICKER), and various punctuation marks. The regular expression pattern
used for this initial sanitization is shown below.

Listing 3.1: Initial Regex Pattern for Tweet Sanitization
1 char_patterns = re.compile(
2 ’http[s]?://(?:[a-zA-Z]|[0-9]|[[a-zA-Z]+|
3 @[a-zA-Z]+|[,.ˆ_$*%-;!?:]’
4)
5

6 for i in range(len(tweet_df["text"])):
7 tweet_df["text"][i] = char_patterns.sub(’’,

tweet_df["text"][i])

Following the initial cleaning, two distinct data structures are prepared for dif-
ferent modeling approaches. The first approach involves creating a daily sum-
mary of market sentiment. To achieve this, all individual tweets for a given
stock on a specific day are aggregated by concatenating their text into a single
document. This produces a DataFrame where each row corresponds to one stock
on one trading day, containing all associated tweet text.

A second, more refined cleaning step is then applied to both the aggregated and
non-aggregated tweet data. This step removes words and abbreviations that
could act as trivial predictors or introduce noise, such as the stock’s own ticker
symbol, retweet indicators (’rt’), and common filler words like ’inc’ and ’ie’. This
ensures that the model focuses on the semantic content of the tweets rather than
superficial patterns.

Listing 3.2: Refined Regex for Removing Tickers and Noise
1 for i in range(len(tweet_df["text"])):
2 # The ticker is dynamically inserted into the pattern
3 ticker = tweet_df["ticker"][i]
4

5 more_patterns = re.compile(
6 r’(\s*)({})(\s*)|(\s*)ATUSER(\s*)|(\s*)AT_USER(\s*)|
7 (\s*)URL(\s*)|(\s*)rt(\s*)|(\s*)inc(\s*)|
8 (\s*)ie(\s*)’.format(ticker), flags=re.IGNORECASE
9)

10

11 tweet_df["text"][i] = more_patterns.sub(’’,
tweet_df["text"][i])

14

This multi-stage pre-processing pipeline results in two final, cleaned datasets
ready for analysis:

• merged_stock_tweet.parquet: Contains tweets aggregated on a daily
per-stock basis.

• stock_tweet_no_merge.parquet: Contains individual tweets, cleaned
but not aggregated.

These clean and structured datasets serve as the foundation for all subsequent
feature extraction and model training tasks.

3.3 Feature Engineering

3.3.1 Technical Indicator Generation from Stock Data

In addition to social media signals, a comprehensive set of technical indicators
is engineered from the historical price data. These features are widely used
in quantitative trading to capture market dynamics such as trend, momentum,
volatility, and volume, providing the models with a quantitative basis for under-
standing price action ([Murphy, 1999]).

The process leverages the pandas_ta library. To ensure chronological integrity
and prevent data leakage across assets, the dataset is grouped by each unique
ticker, and the feature engineering functions are applied independently to each
stock’s time series. The selection of indicators is designed to provide a multi-
faceted view of the market:

• Trend Indicators: Exponential Moving Averages (EMAs) with periods of
12, 26, and 50 days are calculated to identify short, medium, and long-term
trends. The Moving Average Convergence Divergence (MACD) indicator is
also included, providing the MACD line, signal line, and histogram.

• Momentum Indicators: The Relative Strength Index (RSI) with a 14-
day period is used to measure the speed and change of price movements,
helping to identify overbought or oversold conditions. The Stochastic RSI
is also computed to provide a more sensitive momentum reading.

• Volatility Indicators: The Average True Range (ATR) measures market
volatility, while Bollinger Bands (with a 20-day period and 2 standard de-
viations) create a dynamic envelope around the price, indicating periods of
high or low volatility.

• Volume Indicators: On-Balance Volume (OBV) is used to relate price
and volume, providing insights into the strength of a price trend based on
trading volume.

Listing 3.3: Function for Calculating Technical Indicators
1 def apply_ta_indicators(df_group):
2 df_group.set_index(pd.DatetimeIndex(df_group[’date’]),

inplace=True)
3 # Trend indicators
4 df_group.ta.ema(length=12, append=True)
5 df_group.ta.ema(length=26, append=True)
6 df_group.ta.ema(length=50, append=True)
7 df_group.ta.macd(fast=12, slow=26, signal=9, append=True)
8

15

9

10 # Momentum indicators
11 df_group.ta.rsi(length=14, append=True)
12 df_group.ta.stochrsi(length=14, append=True)
13

14 # Volatility indicators
15 df_group.ta.atr(length=14, append=True)
16 bb = ta.bbands(df_group[’close’], length=20, std=2)
17 df_group[’BB_upper’] = bb[’BBU_20_2.0’]
18 df_group[’BB_middle’] = bb[’BBM_20_2.0’]
19 df_group[’BB_lower’] = bb[’BBL_20_2.0’]
20

21 # Volume indicators
22 df_group.ta.obv(append=True)
23 return df_group.reset_index(drop=True)
24

25 master_df =
master_df.groupby(’ticker’).apply(apply_ta_indicators)

3.3.2 NLP Feature Extraction from Social Media

After pre-processing, the raw text of the tweets is transformed into a set of quan-
titative features suitable for machine learning. This process leverages several
pre-trained transformer models from the HuggingFace library to extract nu-
anced signals related to sentiment, emotion, and financial stance. Each feature
is calculated on a per-tweet basis before being aggregated to a daily feature.

First, a general sentiment score is assigned to each tweet using the nlptown/
bert-base-multilingual-uncased-sentiment model. This model classi-
fies text on an ordinal scale from 1 (very negative) to 5 (very positive), with the
score determined by taking the argmax of the model’s output logits. The function
in Listing 3.4 demonstrates this per-tweet calculation. To create a daily signal,
the final sentiment score for a given stock is the average of all individual tweet
scores from that day.

Listing 3.4: Function for Calculating Sentiment Score
1 def cal_sentiment_score(text):
2 # Tokenize and move tensors to GPU
3 inputs = tokenizer.encode(text, return_tensors=’pt’,

truncation=True, max_length=512).to(device)
4

5 with torch.no_grad():
6 outputs = bert_model(inputs)
7

8 # The sentiment is the index of the highest logit, plus one
9 sentiment = int(torch.argmax(outputs.logits)) + 1

10 return sentiment

To capture a more detailed emotional context, a second model, j-hartmann/
emotion-english-distilroberta-base, is employed. This classifier ana-
lyzes each tweet and returns a probability distribution across seven distinct
emotional categories. These categories—anger, disgust, fear, joy, neutral, sad-
ness, and surprise—are based on established emotion recognition frameworks
in NLP research, such as that proposed by Saravia et al. [2018]. This process

16

generates seven feature columns where the daily value for each emotion is the
sum of all corresponding confidence scores from tweets on that day, aggregating
the total emotional ”charge” for a stock.

Finally, to incorporate a domain-specific signal, a financial stance detection model,
zhayunduo/roberta-base-stocktwits-finetuned, is used. This is crucial
for distinguishing general sentiment from a direct opinion on a stock’s future
performance. The model, specifically fine-tuned on data from the StockTwits
social network, classifies each tweet as either ’Positive’ (bullish) or ’Negative’
(bearish) and provides a confidence score, as shown in Listing 3.5. The daily
stance is then captured in two columns representing the total count of tweets
classified as ’Positive’ and ’Negative’, respectively.

Listing 3.5: Function for Financial Stance Detection
1 def stance_score(text):
2 # The pipeline handles tokenization and model inference
3 result = nlp(text)
4 label = result[0][’label’]
5 score = result[0][’score’]
6 return label, score

This multi-faceted feature engineering approach produces a rich daily summary
of social media signals, which serves as a primary input for the stock movement
prediction models. The final enriched dataset is saved as stock_tweets_-
withsentiment_withemotion_withstance_nomerge.parquet.

3.4 Final Dataset
The final step in the data preparation pipeline is the construction of a mas-
ter DataFrame that consolidates all engineered features from the different data
sources: historical stock prices, aggregated daily tweet metrics, and company
metadata. This unified dataset serves as the single source of truth for training
and evaluating all predictive models.

The process begins by merging the daily stock price data with the daily aggre-
gated tweet features. A left merge is performed on the stock price table, ensuring
that all trading days are preserved, even those for which no tweet data is avail-
able. For such days, the tweet-derived features (e.g., sentiment, emotion scores,
stance counts) are imputed with a value of zero, representing a neutral or non-
existent social media signal. Subsequently, static company information, such as
sector and company name, is merged in based on the stock ticker.

The resulting master DataFrame is a rich, high-dimensional dataset where each
row corresponds to a single trading day for a specific stock. It contains all
the necessary information for building multimodal prediction models, combining
fundamental company attributes, market-based technical indicators, and social
media sentiment.

The columns of the final master DataFrame are described below:

date: The date of the trading session.

17

open, high, low, close, adj_close: Standard daily Open, High, Low,
Close, and Adjusted Close prices.

volume: The number of shares traded on that day.

ticker: The stock’s ticker symbol.

company: The stock’s company name.

sector: The industrial sector to which the company belongs.

stance_positive, stance_negative: The total daily count of tweets clas-
sified as bullish and bearish, respectively.

sentiment: The average sentiment score (from 1 to 5) of all tweets for that
day.

emotion_: Seven columns (emotion_anger, emotion_disgust, etc.) con-
taining the summed daily scores for each emotion.

MACD, MACDh*, MACDs*: The MACD line, histogram, and signal line.

RSI_14: The 14-day Relative Strength Index.

STOCHRSIk*, STOCHRSId*: The K and D lines of the Stochastic RSI.

ATRr_14: The 14-day Average True Range.

BB_upper, BB_middle, BB_lower: The upper, middle, and lower Bollinger
Bands.

OBV: The On-Balance Volume indicator.

EMA_12, EMA_26, EMA_50: Exponential Moving Averages for 12, 26, and 50-
day periods.

3.5 Model Evaluation and Metric Tracking
To facilitate a rigorous and reproducible evaluation of predictive models, a cus-
tom Python class, StockPredictionPipeline, was created. This class serves as a
comprehensive framework that encapsulates the entire experimental workflow,
from data processing to model training, evaluation, and results aggregation. Its
primary design goal is to enable the systematic benchmarking of different model
architectures and problem formulations across a diverse portfolio of stocks.

The pipeline’s flexibility is centered around its initialization, where the user de-
fines the core parameters of the experiment. These inputs include the dataset,
the feature set, the model architecture (e.g., LSTM, BiLSTM), the time-series
sequence length, and, most importantly, the problem type. This parameter ex-
plicitly configures the pipeline to perform either regression (predicting the mag-
nitude of the next day’s price change) or classification (predicting the direction
of the next day’s price change).

18

Listing 3.6: Feature Set and Pipeline Initialization
1 feature_columns = [
2 ’open’, ’high’, ’low’, ’close’, ’volume’,
3 ’stance_positive’, ’stance_negative’,
4 ’EMA_12’, ’EMA_26’, ’EMA_50’, ’MACD_12_26_9’,

’MACDh_12_26_9’,
5 ’MACDs_12_26_9’, ’RSI_14’, ’ATRr_14’,

’STOCHRSIk_14_14_3_3’,
6 ’STOCHRSId_14_14_3_3’, ’BB_upper’, ’BB_middle’,

’BB_lower’, ’OBV’
7]
8

9 #The pipeline can be initialized for either regression or
classification

10

11 pipeline = StockPredictionPipeline(
12 df=master_df,
13 feature_columns=feature_columns,
14 model_type=’BiLSTM’,
15 sequence_length=12,
16 problem_type=’regression’ # or

’classification’
17)

A distinct model is trained for each company, allowing the network to capture
the unique dynamics of individual stocks. The model architecture is constructed
dynamically based on the chosen problem type. While the core recurrent lay-
ers (e.g., BiLSTM) and regularization layers (Batch Normalization, Dropout)
remain consistent, the output layer and compilation settings are tailored specif-
ically to the task.

For regression, the model employs a final Dense layer with a linear activation
function and is compiled with the Huber loss function to robustly predict contin-
uous log returns.

For classification, the model uses a Dense layer with a sigmoid activation func-
tion to output a probability and is compiled with binary cross-entropy loss for
the directional prediction task.

Listing 3.7: Task-Specific Model Architecture
1 def build_model(self, input_shape):
2 # ... (Shared RNN, Batch Norm, and Dense layers) ...
3

4 # Problem-specific output layer and compilation
5 if self.problem_type == ’regression’:
6 model.add(layers.Dense(1, activation=’linear’))
7 model.compile(
8 optimizer=keras.optimizers.Adam(learning_rate=0.001),
9 loss=’huber’,

10 metrics=[’mae’, ’mse’]
11)
12 else: # classification
13 model.add(layers.Dense(1, activation=’sigmoid’))
14 model.compile(
15 optimizer=keras.optimizers.Adam(learning_rate=0.001),
16 loss=’binary_crossentropy’,

19

17 metrics=[’accuracy’, ’precision’, ’recall’]
18)
19 return model

The evaluation logic is equally task-aware. The pipeline calculates a compre-
hensive suite of metrics appropriate for the chosen problem type, ensuring a
complete assessment of performance.

When a regression model is trained, it calculates standard regression metrics
(MSE, MAE, R²). Crucially, it also evaluates the model’s directional capability by
converting the predicted log returns into binary up/down signals and computing
corresponding classification metrics (Accuracy, MCC, F1 Score).

When a classification model is trained, it directly calculates the full set of classi-
fication metrics from the model’s probabilistic output. In this mode, the regression-
specific metrics are recorded as not applicable (NaN).

This dual-metric system ensures that regardless of the primary task, the model’s
ability to predict market direction—a key indicator of practical utility—is al-
ways evaluated. All performance metrics, along with metadata like company,
sector, and sample sizes, are captured for each individual stock.

Listing 3.8: Comprehensive Metric Collection
1 result = {
2 ’company’: company_name,
3 ’sector’: sector,
4 ’model_type’: self.model_type,
5 ’problem_type’: self.problem_type,
6 # Regression metrics (NaN if classification)
7 ’mse’: mse,
8 ’mae’: mae,
9 ’r2’: r2,

10 # Classification / Directional metrics
11 ’mcc’: mcc,
12 ’f1’: f1,
13 ’precision’: precision,
14 ’recall’: recall,
15 ’directional_accuracy’: directional_accuracy,
16 # Data info
17 ’n_samples’: len(X),
18 ’test_samples’: len(X_test)
19 }

Upon processing all companies, the pipeline aggregates the individual results
into a final Pandas DataFrame. An analysis function then computes overall per-
formance statistics (mean and standard deviation) for each metric, provides per-
formance breakdowns by market sector, and identifies top-performing models.
This aggregated data is saved to a CSV file, creating a persistent and detailed
record of the experiment. This structured methodology allows for a direct and
fair comparison between the two distinct approaches: predicting the magnitude
of price changes versus predicting the direction.

20

3.6 Investment Simulation Pipeline
The core of this project is an event-driven simulation system designed to recre-
ate a realistic trading environment. This pipeline moves forward day-by-day,
making dynamic decisions about model training, stock selection, and capital al-
location based on historical data available up to that point. This approach avoids
lookahead bias and provides a robust evaluation of the strategy’s real-world vi-
ability. The entire system is governed by a set of key configurable parameters
that define its behavior.

Listing 3.9: Global Configuration for the Simulation
1 MODEL_SAVE_PATH = "trained_models/"
2 INITIAL_TRAINING_DAYS = 1100 # Days of data before simulation

begins
3 KELLY_FRACTION = 0.05 # Fraction of the Kelly bet to take
4 SECTOR_CONFIDENCE_THRESHOLD = 0.40 # Min avg sector

probability to consider
5 RETRAIN_INTERVAL = 200 # Days before a model is flagged for

retraining
6 MAX_DAY_GAP = 5 # Max gap to consider a data period contiguous

The pipeline is architected around several key functions that handle data prepa-
ration, model training, prediction, and portfolio management.

3.6.1 Dynamic Data Handling and Robustness

To handle the non-continuous nature of real-world financial data (due to week-
ends, holidays, or data gaps), the system first identifies contiguous trading pe-
riods for each stock. This ensures that the time-series sequences fed into the
models represent uninterrupted data, minimizing the chances of models learn-
ing from artificial jumps. Furthermore, the sequence length for each model is
not fixed but is calculated dynamically based on the amount of historical data
available for each specific company. This adaptive approach allows the system
to build more robust models for stocks with longer histories while still being able
to model those with less available data.

Listing 3.10: Handling of Contiguous Data Periods
1 def create_contiguous_sequences(data: np.ndarray,
2 targets: np.ndarray,
3 contiguous_periods: list,
4 sequence_length: int):
5

6 X, y = [], []
7

8 for start_idx, end_idx in contiguous_periods:
9 # ... logic to skip periods shorter than

sequence_length ...
10

11 for i in range(start_idx + sequence_length, end_idx +
1):

12 X.append(data[i-sequence_length:i])
13 y.append(targets[i])
14

15 return np.array(X), np.array(y)

21

3.6.2 Per-Asset Modeling and Probability Calibration

A separate LSTM model is trained for each individual stock. The task is framed
as a binary classification problem: predicting whether the next day’s closing
price will be higher than the current day’s close. A critical step in the training
process is the calibration of model outputs. The raw output of a neural network’s
sigmoid function, while bounded between 0 and 1, does not represent a true,
reliable probability. To address this, an Isotonic Regression model is fitted on
the validation set predictions. This post-processing step calibrates the model’s
output, transforming it into more accurate probabilities that can be confidently
used for quantitative decision-making, such as in the Kelly Criterion.

For each asset, the system saves four essential artifacts: the trained Keras
model, the fitted data scaler, the Isotonic Regression calibrator, and the dynam-
ically calculated sequence length.

Listing 3.11: Model Training and Isotonic Calibration
1 def train_company_models(company_data_df: pd.DataFrame,
2 ticker: str, ...):
3

4 # ... data splitting and scaling ...
5

6 # Define and train the LSTM model
7 model = keras.Sequential([
8 layers.Input(shape=(X_train_scaled.shape[1],

X_train_scaled.shape[2])),
9 layers.Bidirectional(layers.LSTM(128,

return_sequences=True, ...)),
10 layers.Bidirectional(layers.LSTM(64,

return_sequences=False, ...)),
11 layers.BatchNormalization(),
12 layers.Dense(32, activation=’relu’),
13 layers.Dropout(0.3),
14 layers.Dense(1, activation=’sigmoid’)
15])
16

17 model.compile(loss=’binary_crossentropy’, ...)
18 model.fit(X_train_scaled, y_train, ...)
19

20 # Train the Isotonic Regression calibrator
21 validation_predictions =

model.predict(X_val_scaled).flatten()
22 calibrator = IsotonicRegression(y_min=0.0, y_max=1.0,

out_of_bounds=’clip’)
23 calibrator.fit(validation_predictions, y_val)
24

25 # Save all components
26 model.save(f"{ticker}_lstm.keras")
27 joblib.dump(calibrator, f"{ticker}_calibrator.pkl")
28 joblib.dump(scaler, f"{ticker}_scaler.pkl")
29 joblib.dump(sequence_length, f"{ticker}_seq_length.pkl")

3.6.3 Portfolio Construction and Capital Allocation

Each day within the simulation, the system generates a calibrated probability
prediction for every stock using the trained model. These predictions are then

22

fed into a portfolio construction module that implements a sector-based invest-
ment strategy combined with the Fractional Kelly Criterion for position sizing.

The process is as follows:

1. Sector-Level Filtering: Stocks are grouped by their respective sectors.
If the average calibrated probability for a sector falls below the parame-
ter SECTOR_CONFIDENCE_THRESHOLD, the entire sector is disregarded for
that day.

2. Best-in-Sector Selection: For each qualifying sector, the single stock
with the highest calibrated probability is selected as the investment can-
didate.

3. Fractional Kelly Sizing: The investment amount for each selected stock
is determined using the Fractional Kelly Criterion. The optimal fraction of
capital, f , is given by:

f = k ·
(
p− 1− p

b

)
,

where

• p is the calibrated probability of the stock’s price increasing,
• b is the historical average payout ratio (win size divided by loss size),

calculated once from the initial training data,
• k is the KELLY_FRACTION, a conservative scaling factor used to reduce

risk.

This approach ensures diversification across sectors and employs a mathemati-
cally grounded method for both risk and capital management.

Listing 3.12: Portfolio Selection and Sizing Logic
1 def select_and_size_portfolio(daily_predictions_df,
2 payout_map, ...):
3

4 investment_decisions = []
5 for sector, group in

daily_predictions_df.groupby(’sector’):
6 # 1. Sector-Level Filtering
7 if group[’calibrated_prediction’].mean() <

sector_threshold:
8 continue
9

10

11 # 2. Best-in-Sector Selection
12 best_stock =

group.loc[group[’calibrated_prediction’].idxmax()]
13 p = best_stock[’calibrated_prediction’]
14 b = payout_map.get(best_stock[’ticker’], 0)
15

16 if b <= 0:
17 continue
18

19 # 3. Fractional Kelly Sizing
20 kelly_percentage = p - ((1 - p) / b)
21 if kelly_percentage > 0:

23

22 investment_fraction = kelly_percentage *
kelly_fraction

23 investment_amount = total_capital *
investment_fraction

24 investment_decisions.append(...)
25

26 return pd.DataFrame(investment_decisions)

3.6.4 Simulation Loop and Performance Tracking

The main simulation function orchestrates the entire process over a long histori-
cal period. It begins by training models on an initial INITIAL_TRAINING_DAYS
of data. Then, it iterates through the remaining dates one by one. On each day,
it:

1. Identifies models that require training or retraining (based on the param-
eter RETRAIN_INTERVAL).

2. Generates predictions for all available assets using the latest historical
data.

3. Constructs the daily portfolio and determines investment sizes.

4. Calculates the profit or loss (PnL) from the previous day’s investments
based on the actual market outcome.

5. Updates the total capital.

6. Logs all daily activity, including capital levels, PnL, and specific trades
made.

Finally, upon completion of the simulation, key performance metrics such as the
Total Return on Investment (ROI) and the annualized Sharpe Ratio are calcu-
lated from the log to provide a comprehensive summary of the strategy’s per-
formance. ROI is a fundamental performance measure representing the total
percentage gain on the initial capital ([Brealey et al., 2011]). The Sharpe Ratio,
developed by William F. Sharpe, is a critical measure of risk-adjusted return,
quantifying the excess return earned per unit of volatility ([Sharpe, 1966]).

3.7 Implementation Details
The entire system is implemented in Python 3, leveraging its extensive ecosys-
tem of libraries for data science and machine learning. The experimental work-
flow is managed within standalone Jupyter Notebooks, which allows for a clear,
step-by-step documentation of the data processing, modeling, and evaluation
stages. For a potential real-world deployment, these notebooks could be auto-
mated using a workflow management tool like Papermill.

3.7.1 Libraries and Modules by Functionality

• Data Handling
– pandas (pd) : Manage stock price series and tweet-derived tabular

data.

24

– numpy (np) : Perform numerical operations and efficient array com-
putations.

– json : Parse tweet datasets and save model configurations.
– os : Manage file paths and environment variables (e.g., suppress Ten-

sorFlow logs).
– site : Minimal usage for environment path management.

• Feature Engineering
– pandas ta (ta) : Generate technical indicators (RSI, MACD, etc.)

from stock price data.
– re : Clean and preprocess tweets using regular expressions.

• Preprocessing and Calibration (sklearn)
– preprocessing : - StandardScaler, MinMaxScaler, RobustScaler

: Normalize features before training.
- IsotonicRegression : Calibrate predicted probabilities.

– utils : - compute_class_weight : Handle class imbalance in finan-
cial classification tasks.

• Model Training and Architecture
– tensorflow (tf)

* keras.models : Sequential, load_model — Build and reload
deep sequential models.

* keras.layers : LSTM, Dense, Dropout — Core RNN and fully-
connected layers.

* keras.callbacks : EarlyStopping, ReduceLROnPlateau —
Stabilize training and prevent overfitting.

* keras.regularizers : l2 — Apply weight penalties for general-
ization.

– torch : Backend engine for HuggingFace Transformers; enables GPU-
accelerated training.

• Model Evaluation (sklearn)
– metrics : - precision_score, recall_score, f1_score, matthews_-
corrcoef : Classification evaluation.
- mean_squared_error, mean_absolute_error, r2_score : Re-
gression evaluation.
- confusion_matrix : Assess classification performance visually.

– model selection : - train_test_split : Split data into training
and testing sets.
- TimeSeriesSplit : Ensure chronological integrity in time series
validation.

• NLP and Transformers (HuggingFace)
– AutoTokenizer, AutoModelForSequenceClassification : General-

purpose pretrained models for tweet classification.
– RobertaForSequenceClassification, RobertaTokenizer : Fine-

tuned RoBERTa for financial sentiment analysis.
– pipeline : Rapid prototyping of classification workflows.

• Visualization
– matplotlib.pyplot (plt) : Create plots for exploratory analysis and

results.
– seaborn (sns) : Generate statistical plots such as heatmaps for fea-

ture correlations.
– wordcloud (WordCloud) : Visualize word frequency distributions

in tweets.

25

• Utilities
– joblib : Save/load trained preprocessing objects like scalers.
– tqdm : Track progress in training loops and data preprocessing.
– warnings : filterwarnings(’ignore’) — Keep experiment logs

clean by suppressing irrelevant warnings.

26

Chapter 4: Experiments & Results

This chapter presents the findings of the study, structured to systematically an-
swer the core research questions and objectives established in Chapter 2. The
experiments are designed to evaluate the system’s performance at three key lev-
els. First, we compare different recurrent neural network architectures to iden-
tify the most effective base model. Second, we investigate the central hypothesis
of this dissertation by analyzing the impact of integrating NLP-derived features
with traditional technical indicators on predictive performance. Finally, we as-
sess the practical viability of the complete pipeline by simulating its trading
performance to measure profitability and risk-adjusted returns. The following
sections detail the evaluation metrics, experimental setup, and the results ob-
tained at each stage.

4.1 Evaluation metrics
To ensure a robust evaluation, a combination of classification and regression
metrics was employed. The primary goal of the trading system is to correctly
predict the direction of the next day’s price movement. Therefore, metrics that
assess directional correctness are essential.

Accuracy serves as a baseline measure of overall correctness. However, in fi-
nancial markets where the classes (up or down movements) can be imbalanced,
accuracy alone can be misleading. To provide a more nuanced view, we use Pre-
cision, Recall, and the F1-Score. For our application, precision is particularly
critical; it measures the proportion of positive predictions (i.e., predicted ”up”
movements) that were actually correct. A high-precision model minimizes false
positives, which in a trading context correspond to losing trades. While Recall
(the ability to identify all actual ”up” movements) is important, a missed op-
portunity (a false negative) is generally less costly than a realized loss from a
poorly placed trade, especially given the large pool of 88 stocks from which to
select opportunities.

The Matthews Correlation Coefficient (MCC) is used as the primary metric for
model comparison. As noted by Xu and Cohen [2018], MCC is a more reliable
statistical measure as it produces a high score only if the prediction obtained
good results in all four confusion matrix categories (true positives, false nega-
tives, true negatives, and false positives), making it robust against data skew.

For models trained on the regression task (predicting the magnitude of price
change), standard metrics such as Mean Squared Error (MSE) are calculated.
However, to assess their practical utility, their Directional Accuracy is also com-
puted by converting the predicted continuous returns into binary up/down sig-
nals. This allows for a direct comparison of the practical trading value of both
classification and regression approaches.

27

4.2 Model Comparison
To establish the best predictive foundation for our system, an initial set of ex-
periments was conducted using only stock-based technical indicators as fea-
tures. These experiments evaluated four recurrent neural network architectures
(LSTM, BiLSTM, GRU, and BiGRU) across two distinct prediction tasks:

• Classification: Predicting the binary direction of the next day’s price move-
ment (i.e., up or down).

• Predicting the magnitude of the next day’s price movement, which is then
converted to a directional signal for comparison.

Table 4.1: Evaluation Results: Classification models
Setting Precision Recall F1 MCC Accuracy
LSTM 0.5202 0.6081 0.5224 0.0861 0.5368
BiLSTM 0.5283 0.6205 0.5219 0.0592 0.5173
GRU 0.4947 0.6020 0.5069 0.0440 0.5124
BiGRU 0.5280 0.6013 0.5189 0.0545 0.5173

As shown in Table 4.1, for the classification task, the standard LSTM model
achieved the best performance across all key metrics. It secured the highest
MCC (0.0861) and Accuracy (0.5368). While the bidirectional models were com-
petitive, they did not demonstrate a superior predictive advantage over the sim-
pler LSTM architecture in this fundamental test. It is important to contex-
tualize these results: an MCC of 0.0861 indicates a weak positive correlation
between the predictions and actual outcomes. While this value may seem low
in absolute terms, it is not uncommon in the highly stochastic and noisy en-
vironment of day-trading prediction systems, underscoring the inherent diffi-
culty of the task. This metric provides a more realistic performance assessment
than accuracy alone, especially in financial datasets where class balance can be
near 50%. The superior performance of the simpler LSTM architecture suggests
that for this dataset and feature set, the additional context from future time
steps captured by bidirectional layers did not translate into improved predictive
power. Given its balance of performance and efficiency, the LSTM was selected
for all subsequent classification-based experiments.

Table 4.2: Evaluation Results: Regression models
Setting Precision Recall F1 MCC MSE Accuracy
LSTM 0.4703 0.6630 0.5180 0.0245 0.000239 0.5006
BiLSTM 0.4937 0.6480 0.5198 0.0259 0.000240 0.5055
GRU 0.5216 0.6178 0.5149 0.0521 0.000238 0.5142
BiGRU 0.4703 0.6630 0.5180 0.0245 0.000239 0.5006

In the regression task, evaluated based on their directional accuracy, the GRU
model emerged as the top performer (Table 4.2), achieving the highest MCC of
0.0521 and the lowest MSE. However, its overall directional performance was
significantly lower than that of the best classification model (LSTM). This dis-
parity is likely because predicting the precise magnitude of a stock’s movement
is a substantially more complex task than predicting its direction. The model’s
objective function in regression is focused on minimizing price-distance error,

28

which may not align perfectly with maximizing directional correctness. The
added complexity of predicting magnitude can obscure the primary directional
signal, leading to poorer performance in a practical trading context. Conse-
quently, the classification approach was deemed superior and was used for the
final trading simulation.

This was also an advantage in system complexity, since the original design for
the system expected a prediction akin to a probability for the next steps involv-
ing the Kelly criterion. Since the regression models output a magnitude instead
of a degree of confidence, the process to use the kelly criterion with a regression
model becomes much more intensive in both memory and processing time. The
process involves using an array of independent models predicting the next price
and processing the set of predictions in a different formulation of the kelly cri-
terion. This approach would have been mathematically valid, but is out of scope
for this project.

4.3 Impact of feature selection in model performance
This section investigates the central hypothesis of this dissertation: whether
integrating NLP-derived features from Twitter enhances stock movement pre-
diction. The best-performing architecture from the previous section (LSTM) was
used to evaluate various combinations of features.

Table 4.3: Evaluation Results: LSTM model with different sets of features
Setting Precision Recall F1 MCC Accuracy
Stock features only 0.5202 0.6081 0.5224 0.0861 0.5368
Stance 0.4943 0.5585 0.4771 0.0509 0.5123
Sentiment 0.4805 0.5831 0.4880 0.0457 0.5137
Emotion 0.5195 0.5837 0.5110 0.0473 0.5148
Stance+Sentiment 0.5026 0.5885 0.5054 0.0479 0.5152
Sentiment+Emotion 0.4845 0.5851 0.4958 0.0359 0.5180
Stance+Emotion 0.5162 0.6005 0.5220 0.0513 0.5223
Stance+Sentiment+Emotion 0.5280 0.6013 0.5189 0.0545 0.5173

The results presented in Table 3 reveal a counterintuitive outcome. The model
trained on Stock features only outperformed all configurations that included
Twitter-derived features substantially, achieving the highest MCC (0.0861) and
Accuracy (0.5368). While the model incorporating all NLP features (Stance +
Sentiment + Emotion) produced competitive F1 and Accuracy scores, its MCC
was substantially lower (0.0545), indicating a less balanced and reliable predic-
tive performance.

This suggests that, in their current aggregated form, the NLP features intro-
duced more noise than signal. We speculate this may be due to two primary
factors. First, there may be conflicting signals between the backward-looking
technical indicators and the forward-looking, but often noisy, social media sen-
timent. A stock might be technically ”overbought”, signaling a downturn, while
public sentiment remains positive, creating a contradictory input for the model
and ultimately lowering the performance. Second, the raw aggregation of all
tweets fails to account for their ”newsworthiness” or credibility. A handful of
influential, high-impact tweets may be drowned out by a large volume of low-
information content.

29

During the development stages of the project, the possibility of leveraging an
agentic large language model (LLM) pipeline for tweet newsworthiness was ex-
plored but ultimately had to be abandoned due to time and computing power
constraints. However, an important finding during this exploration stage was
that, in many cases, the LLM would point out that the tweet by itself did not
provide any information relevant to investment decisions. This points to short-
comings in our dataset and potential avenues of improvement for the system.

This finding does not invalidate the potential of social media data but highlights
the need for more sophisticated feature engineering and strengthening of the
dataset. Future work should explore methods to filter or weight tweets based
on user influence, engagement metrics, or topic modeling to distill high-quality
signals from the noise, potentially unlocking the predictive value of tweets and
other social media sources.

4.4 Model comparison to baseline and previous work
To contextualize our findings, we compare the performance of our best model
against an ARIMA baseline and the models from the literature that used the
same dataset, most notably the HedgeFundAnalyst (HFA) variation of the stock-
net model from [Xu and Cohen, 2018].

Table 4.4: Best models compared to previous papers
Model Avg. Accuracy MCC

ARIMA, [Brown, 2004] 0.514 -0.020
HAN, [Hu et al., 2018] 0.576 0.051
HFA, [Xu and Cohen, 2018] 0.582 0.080
LSTM (Stock features only) 0.536 0.086
LSTM (Stock + Twitter features) 0.522 0.051

This difference can be attributed to fundamental architectural distinctions. The
HFA model is a deep generative model that uses recurrent, continuous latent
variables and neural variational inference to explicitly model the high stochas-
ticity and chaotic nature of the market. In contrast, our approach is discrimi-
native, learning a direct mapping from features to outcomes. The HFA model’s
generative nature is purpose-built to handle market randomness, which likely
contributes to its higher accuracy. Nevertheless, the fact that our discrimina-
tive LSTM model, trained on a comprehensive set of technical indicators, can
achieve a comparable MCC is a significant result. It validates the effectiveness
of using a robust suite of technical features within a well-established deep learn-
ing framework, suggesting it is a sound and effective approach.

4.5 Simulation performance
The ultimate test of the system is its ability to generate profit in a realistic trad-
ing simulation. This final experiment evaluates the entire end-to-end pipeline,
integrating the best predictive model that included tweet features (LSTM with
stock and all twitter features) with the Isotonic Regression calibration and the
Fractional Kelly Criterion for capital allocation over a 100-day trading period.

30

Final Capital ROI (%) Sharpe Ratio
$101,976.26 1.98 0.96
$101,611.46 1.61 0.38
$101,481.75 1.48 0.22
$101,279.62 1.28 0.11
$101,063.83 1.06 -0.24

Table 4.5: Simulation Results for 100 Trading days (Initial Capital =
$100,000.00)

The simulation results in Table 5 demonstrate the practical success of the pro-
posed system. Starting with an initial capital of $100,000.00, the strategy con-
cluded the 100-day period with $101,976.26, yielding a Return on Investment
(ROI) of 1.98%. While a modest return, the most critical outcome is that the
system was consistently profitable, validating the viability of the integrated
pipeline.

Furthermore, the strategy achieved a consistent positive Sharpe Ratio. The
Sharpe Ratio measures risk-adjusted return per unit of risk (volatility) taken.
On its current state, the system performs better than a risk free asset with an-
nualized returns of 3% even accounting for the volatility and risk taken. This
suggests the portfolio construction and risk management components, partic-
ularly the sector-based filtering and the conservative Fractional Kelly sizing,
were highly effective at creating a stable growth trajectory and mitigating risk.
The simulation thus confirms that the end-to-end system, from prediction to
execution, forms a robust and profitable trading framework.

With further refinements and improvements, the end-to-end pipeline could be
deployed with a performance that consistently surpasses risk free options and
could be used to turn a significant profit long term. A final discussion on the
suggested refinements and improvements on the next and final chapter.

31

Chapter 5: Conclusions

5.1 Achievements
This project successfully developed a complete end-to-end day trading system
and systematically evaluated its performance, providing us with several key
insights in response to the research questions posed in Chapter 2.

The first and most central research question concerned the impact of integrating
NLP-derived features with technical indicators. The experiments in Chapter 4
revealed a surprising outcome: the LSTM model trained exclusively on historical
stock data and technical indicators achieved a superior predictive performance
(MCC of 0.0861) compared to all models that included NLP features. The addi-
tion of tweet-derived stance, sentiment, and emotion features, in their current
aggregated form, appear to introduce more noise than signal, thereby degrading
the model’s accuracy.

This outcome presents a notable contrast to the findings of Xu and Cohen (2018),
who demonstrated that their Hedge Fund Analyst (HFA) model benefited from
incorporating tweet data. The divergence in our results does not appear to stem
from the complexity of the predictive model, but rather from the strength of the
baseline it was compared against. The LSTM model in this project was trained
on a comprehensive suite of engineered technical indicators, which established
a very strong baseline on its own. In fact, this technical-only model achieved an
MCC of 0.0861, already surpassing the performance of the more complex HFA
model (MCC of 0.080) on the same dataset. It is plausible that for our feature-
rich baseline, the addition of raw, aggregated tweet data introduced more noise
than valuable signal. In contrast, the baseline used by Xu and Cohen may have
had more capacity to improve from the signals present in the tweet data. This
suggests that the utility of NLP-derived signals is highly sensitive to the feature
engineering pipeline used to process them, as simply aggregating sentiment may
be insufficient to improve upon a strong technical foundation.

This finding directly answers the second research question regarding which NLP
feature provides the most utility. While the model combining all NLP features
was the best among the social media configurations, none of the NLP features,
individually or combined, offered a clear advantage over a purely technical indi-
cator approach. This suggests that without more sophisticated filtering, the raw
sentiment of the crowd is not a reliable predictor in this context.

To answer the third research question, the end-to-end trading system, which
leveraged calibrated LSTM predictions and a Fractional Kelly Criterion, suc-
cessfully achieved positive returns. The simulation over 100 trading days yielded
a return on investment (ROI) of 1.98%, demonstrating the viability of the overall
framework. The system’s ability to generate profit, even with a predictive model
that did not benefit from NLP features, validates the robustness of the probabil-
ity calibration, risk management, and portfolio construction components.

32

Finally, regarding the fourth research question on predictive consistency, the
appendix tables show that the model’s performance was not uniform across
different stocks and sectors. Certain sectors consistently appeared in the top-
performing lists (i.e. Consumer Goods) across various feature sets, while others
(i.e. Basic Materials, Technology), consistently ranked among the worst. This in-
dicates that the model’s effectiveness is asset-dependent, and a one-size-fits-all
approach may not be optimal.

A significant secondary achievement was that the baseline LSTM model, trained
only on technical indicators, achieved an MCC that was competitive with the
HFA model from Xu and Cohen (2018) on the same dataset. This validates
the effectiveness of using a well-established discriminative model with a robust
suite of technical features.

5.2 Limitations and Future work
Despite the successful implementation of a profitable system, this project faced
several limitations that offer paths for future work.

The primary limitation lies in the tweet dataset and its application. The finding
that NLP features degraded performance points to a lack of signal quality. Raw
aggregation of all tweets for a given stock fails to distinguish between high-
impact, insightful commentary and low-information noise. The dataset itself
may be insufficient in volume or quality to capture meaningful shifts in market
sentiment.

Hardware limitations also posed a significant challenge. The final simulation
pipeline required loading, storing, and running predictions for 88 individual
models in quick sequence for each trading day. This process was computation-
ally intensive and time-consuming, constraining the scope and speed of experi-
mentation and highlighting scalability challenges for a real-world, low-latency
deployment.

For future work, it would be highly valuable to explore alternatives to tweets.
Platforms like Reddit, particularly financial subreddits such as r/wallstreetbets
or r/investing, offer a promising alternative. Reddit data is often easier to scrape
via modern APIs, and its structure of threads and comments is inherently topic-
classified, potentially providing a cleaner and more context-rich source of public
sentiment.

Furthermore, a key area for improvement is the filtering and weighting of social
media data. An LLM-based agent designed as a ”newsworthiness” classifier was
briefly explored during development but was abandoned due to time and pro-
cessing power constraints. Reviving this concept represents a critical next step.
Such an agent could be trained to identify and prioritize tweets or posts from
credible sources or those containing genuinely market-moving information, ef-
fectively filtering out the noise that hampered the current model. This would
allow the system to focus on high-quality signals, potentially unlocking the pre-
dictive power of social media data that this project was unable to take advantage
of.

33

Bibliography

Miriam Ayer, H. D. Brunk, G. M. Ewing, W. T. Reid, and Edward Silverman.
An empirical distribution function for sampling with incomplete information.
The Annals of Mathematical Statistics, 26(4):641–647, 1955. ISSN 00034851.
URL http://www.jstor.org/stable/2236377.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. A
neural probabilistic language model. J. Mach. Learn. Res., 3(null):1137–1155,
March 2003. ISSN 1532-4435.

R.A. Brealey, S.C. Myers, and F. Allen. Principles of Corporate Finance. McGraw-
Hill/Irwin series in finance, insurance, and real estate. McGraw-Hill/Irwin,
2011. ISBN 9780071314176. URL https://books.google.co.uk/books?
id=T9y4SgAACAAJ.

Peter F. Brown, John Cocke, Stephen A. Della Pietra, Vincent J. Della Pietra,
Fredrick Jelinek, John D. Lafferty, Robert L. Mercer, and Paul S. Roossin. A
statistical approach to machine translation. Computational Linguistics, 16(2):
79–85, 1990. URL https://aclanthology.org/J90-2002/.

Robert Goodell Brown. Smoothing, forecasting and prediction of discrete time
series. Courier Corporation, 2004.

Noam Chomsky. Syntactic Structures. De Gruyter Mouton, Berlin, Boston, 1957.
ISBN 9783112316009. doi: doi:10.1515/9783112316009. URL https://doi.
org/10.1515/9783112316009.

Wikimedia Commons. File:isotonic regression.svg — wikimedia commons,
the free media repository, 2020. URL https://commons.wikimedia.
org/w/index.php?title=File:Isotonic_regression.svg&oldid=
472818415. [Online; accessed 31-August-2025].

Wikimedia Commons. File:kelly criterion 3d.png — wikimedia commons,
the free media repository, 2025. URL https://commons.wikimedia.
org/w/index.php?title=File:Kelly_Criterion_3D.png&oldid=
1058134207. [Online; accessed 31-August-2025].

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding, 2018.
URL https://arxiv.org/abs/1810.04805.

A. Fielding. Statistical inference under order restrictions. the theory and appli-
cation of isotonic regression. Journal of the Royal Statistical Society. Series A
(General), 137(1):92–93, 1974. ISSN 00359238. URL http://www.jstor.
org/stable/2345150.

D.V. Godoy. DEEP LEARNING WITH PYTORCH STEP-BY-STEP: A Beginner’s
Guide. INDEPENDENTLY PUBLISHED, 2022. ISBN 9798485032760. URL
https://books.google.co.uk/books?id=9j-0zwEACAAJ.

34

http://www.jstor.org/stable/2236377
https://books.google.co.uk/books?id=T9y4SgAACAAJ
https://books.google.co.uk/books?id=T9y4SgAACAAJ
https://aclanthology.org/J90-2002/
https://doi.org/10.1515/9783112316009
https://doi.org/10.1515/9783112316009
https://commons.wikimedia.org/w/index.php?title=File:Isotonic_regression.svg&oldid=472818415
https://commons.wikimedia.org/w/index.php?title=File:Isotonic_regression.svg&oldid=472818415
https://commons.wikimedia.org/w/index.php?title=File:Isotonic_regression.svg&oldid=472818415
https://commons.wikimedia.org/w/index.php?title=File:Kelly_Criterion_3D.png&oldid=1058134207
https://commons.wikimedia.org/w/index.php?title=File:Kelly_Criterion_3D.png&oldid=1058134207
https://commons.wikimedia.org/w/index.php?title=File:Kelly_Criterion_3D.png&oldid=1058134207
https://arxiv.org/abs/1810.04805
http://www.jstor.org/stable/2345150
http://www.jstor.org/stable/2345150
https://books.google.co.uk/books?id=9j-0zwEACAAJ

Sepp Hochreiter. Untersuchungen zu dynamischen neuronalen netzen. 04 1991.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
Computation, 9:1735–1780, 11 1997. doi: 10.1162/neco.1997.9.8.1735.

Ziniu Hu, Weiqing Liu, Jiang Bian, Xuanzhe Liu, and Tie-Yan Liu. Listening
to chaotic whispers: A deep learning framework for news-oriented stock trend
prediction, 2018. URL https://arxiv.org/abs/1712.02136.

J. L. Kelly. A new interpretation of information rate. The Bell System Technical
Journal, 35(4):917–926, 1956. doi: 10.1002/j.1538-7305.1956.tb03809.x.

John F. Kolen and Stefan C. Kremer. Gradient Flow in Recurrent Nets: The
Difficulty of Learning LongTerm Dependencies, pages 237–243. 2001. doi:
10.1109/9780470544037.ch14.

Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-
and short-term temporal patterns with deep neural networks, 2018. URL
https://arxiv.org/abs/1703.07015.

Bryan Lim and Stefan Zohren. Time-series forecasting with deep learning:
a survey. Philosophical Transactions of the Royal Society A: Mathemati-
cal, Physical and Engineering Sciences, 379(2194):20200209, February 2021.
ISSN 1471-2962. doi: 10.1098/rsta.2020.0209. URL http://dx.doi.org/
10.1098/rsta.2020.0209.

Christopher D. Manning and Hinrich Schütze. Foundations of statistical nat-
ural language processing. MIT Press, Cambridge, MA, USA, 1999. ISBN
0262133601.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space, 2013. URL https://arxiv.org/
abs/1301.3781.

J.J. Murphy. Technical Analysis of the Financial Markets: A Comprehensive
Guide to Trading Methods and Applications. New York Institute of Finance
Series. Penguin Publishing Group, 1999. ISBN 9780735200661. URL https:
//books.google.co.uk/books?id=5zhXEqdr_IcC.

Louis M. Rotando and Edward O. Thorp. The kelly criterion and the stock mar-
ket. Am. Math. Monthly, 99(10):922–931, December 1992. ISSN 0002-9890.
doi: 10.2307/2324484. URL https://doi.org/10.2307/2324484.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning
representations by back-propagating errors. Nature, 323:533–536, 1986. URL
https://api.semanticscholar.org/CorpusID:205001834.

Elvis Saravia, Hsien-Chi Toby Liu, Yen-Hao Huang, Junlin Wu, and Yi-Shin
Chen. CARER: Contextualized affect representations for emotion recognition.
In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii, editors,
Proceedings of the 2018 Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3687–3697, Brussels, Belgium, October-November
2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-1404.
URL https://aclanthology.org/D18-1404/.

35

https://arxiv.org/abs/1712.02136
https://arxiv.org/abs/1703.07015
http://dx.doi.org/10.1098/rsta.2020.0209
http://dx.doi.org/10.1098/rsta.2020.0209
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://books.google.co.uk/books?id=5zhXEqdr_IcC
https://books.google.co.uk/books?id=5zhXEqdr_IcC
https://doi.org/10.2307/2324484
https://api.semanticscholar.org/CorpusID:205001834
https://aclanthology.org/D18-1404/

William F. Sharpe. Mutual fund performance. The Journal of Business, 39(1):
119–138, 1966. ISSN 00219398, 15375374. URL http://www.jstor.org/
stable/2351741.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning
with neural networks, 2014. URL https://arxiv.org/abs/1409.3215.

Edward O. Thorp. Chaper 9 - the kelly criterion in blackjack sports betting, and
the stock market*. In S.A. Zenios and W.T. Ziemba, editors, Handbook of Asset
and Liability Management, pages 385–428. North-Holland, San Diego, 2008.
ISBN 978-0-444-53248-0. doi: https://doi.org/10.1016/B978-044453248-0.
50015-0. URL https://www.sciencedirect.com/science/article/
pii/B9780444532480500150.

A. M. Turing. I.—computing machinery and intelligence. Mind, LIX(236):433–
460, 10 1950. ISSN 0026-4423. doi: 10.1093/mind/LIX.236.433. URL https:
//doi.org/10.1093/mind/LIX.236.433.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need, 2017. URL https://arxiv.org/abs/1706.03762.

Jan von Plato. Chapter 75 - a.n. kolmogorov, grundbegriffe der wahrschein-
lichkeitsrechnung (1933). In I. Grattan-Guinness, Roger Cooke, Leo Corry,
Pierre Crépel, and Niccolo Guicciardini, editors, Landmark Writings in
Western Mathematics 1640-1940, pages 960–969. Elsevier Science, Am-
sterdam, 1933. ISBN 978-0-444-50871-3. doi: https://doi.org/10.1016/
B978-044450871-3/50156-X. URL https://www.sciencedirect.com/
science/article/pii/B978044450871350156X.

Joseph Weizenbaum. Eliza—a computer program for the study of natural
language communication between man and machine. Commun. ACM, 9(1):
36–45, January 1966. ISSN 0001-0782. doi: 10.1145/365153.365168. URL
https://doi.org/10.1145/365153.365168.

Yumo Xu and Shay B. Cohen. Stock movement prediction from tweets and his-
torical prices. In Iryna Gurevych and Yusuke Miyao, editors, Proceedings of
the 56th Annual Meeting of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1970–1979, Melbourne, Australia, July 2018. As-
sociation for Computational Linguistics. doi: 10.18653/v1/P18-1183. URL
https://aclanthology.org/P18-1183/.

Bianca Zadrozny and Charles Elkan. Transforming classifier scores into ac-
curate multiclass probability estimates. In Proceedings of the Eighth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’02, page 694–699, New York, NY, USA, 2002. Association for Com-
puting Machinery. ISBN 158113567X. doi: 10.1145/775047.775151. URL
https://doi.org/10.1145/775047.775151.

36

http://www.jstor.org/stable/2351741
http://www.jstor.org/stable/2351741
https://arxiv.org/abs/1409.3215
https://www.sciencedirect.com/science/article/pii/B9780444532480500150
https://www.sciencedirect.com/science/article/pii/B9780444532480500150
https://doi.org/10.1093/mind/LIX.236.433
https://doi.org/10.1093/mind/LIX.236.433
https://arxiv.org/abs/1706.03762
https://www.sciencedirect.com/science/article/pii/B978044450871350156X
https://www.sciencedirect.com/science/article/pii/B978044450871350156X
https://doi.org/10.1145/365153.365168
https://aclanthology.org/P18-1183/
https://doi.org/10.1145/775047.775151

Appendix A: Source Code

The full implementation and supporting scripts for this dissertation are avail-
able on GitHub. They include data preprocessing, model training, and evalua-
tion code, as well as the end-to-end investment simulation pipeline.

https://github.com/DashieLashie/summer-project

37

https://github.com/DashieLashie/summer-project

Appendix B: Additional Tables

Table B.1: Stance: Performance by Sector
Sector Accuracy MCC
Consumer Goods 0.548± 0.085 0.103
Financial 0.545± 0.054 0.089
Healthcare 0.540± 0.053 0.057
Utilities 0.530± 0.206 0.075
Industrial Goods 0.512± 0.067 0.076
Services 0.497± 0.063 0.054
Technology 0.481± 0.060 0.006
Basic Materials 0.448± 0.093 -0.055

Table B.2: Stance: Top 10 Performers (by Directional Accuracy)
Ticker Sector Accuracy MCC
D Utilities 0.676 0.376
PEP Consumer Goods 0.659 0.319
ABBV Healthcare 0.617 0.211
JPM Financial 0.612 0.235
CELG Healthcare 0.610 0.249
BHP Basic Materials 0.600 0.176
DIS Services 0.600 0.010
UPS Services 0.600 0.192
WFC Financial 0.600 0.193
KO Consumer Goods 0.596 0.192

Table B.3: Stance+Sentiment: Performance by Sector
Sector Accuracy MCC
Consumer Goods 0.581± 0.072 0.176
Financial 0.532± 0.057 0.033
Industrial Goods 0.516± 0.079 0.046
Utilities 0.512± 0.072 0.030
Basic Materials 0.508± 0.094 0.086
Healthcare 0.507± 0.072 0.014
Services 0.503± 0.058 0.022
Technology 0.482± 0.061 0.020

38

Table B.4: Stance+Sentiment: Top 10 Performers (by Directional Accuracy)
Ticker Sector Accuracy MCC
ABBV Healthcare 0.681 0.352
PEP Consumer Goods 0.659 0.321
MO Consumer Goods 0.644 0.286
BA Industrial Goods 0.615 0.246
MA Financial 0.614 0.160
T Technology 0.605 0.239
SLB Basic Materials 0.600 0.150
UPS Services 0.600 0.175
PM Consumer Goods 0.591 0.087
CVX Basic Materials 0.585 0.161

Table B.5: Sentiment: Performance by Sector
Sector Accuracy MCC
Healthcare 0.535± 0.069 0.062
Utilities 0.531± 0.026 0.080
Financial 0.523± 0.079 0.053
Technology 0.522± 0.056 0.066
Consumer Goods 0.511± 0.106 0.053
Industrial Goods 0.503± 0.073 0.012
Services 0.502± 0.053 0.015
Basic Materials 0.483± 0.062 0.065

Table B.6: Sentiment: Top 10 Performers (by Directional Accuracy)
Ticker Sector Accuracy MCC
V Financial 0.667 0.336
ABBV Healthcare 0.638 0.339
KO Consumer Goods 0.632 0.243
CELG Healthcare 0.627 0.255
PEP Consumer Goods 0.614 0.311
MDT Healthcare 0.605 0.244
DIS Services 0.600 0.053
BA Industrial Goods 0.596 0.179
FB Technology 0.584 0.182
UPS Services 0.578 0.120

Table B.7: Emotion: Performance by Sector
Sector Accuracy MCC
Consumer Goods 0.588± 0.031 0.123
Financial 0.542± 0.061 0.091
Industrial Goods 0.537± 0.085 0.091
Utilities 0.536± 0.178 0.109
Healthcare 0.514± 0.032 0.008
Technology 0.493± 0.081 0.019
Basic Materials 0.486± 0.086 0.066
Services 0.484± 0.065 -0.019

39

Table B.8: Emotion: Top 10 Performers (by Directional Accuracy)
Ticker Sector Accuracy MCC
D Utilities 0.662 0.381
BA Industrial Goods 0.654 0.300
PG Consumer Goods 0.625 0.000
MO Consumer Goods 0.622 0.237
GOOG Technology 0.618 0.260
GE Industrial Goods 0.606 0.118
T Technology 0.605 0.213
DIS Services 0.600 -0.024
WFC Financial 0.600 0.193
V Financial 0.596 0.189

Table B.9: Sentiment+Emotion: Performance by Sector
Sector Accuracy MCC
Consumer Goods 0.566± 0.099 0.131
Financial 0.536± 0.033 0.032
Basic Materials 0.523± 0.105 0.041
Industrial Goods 0.512± 0.096 0.009
Technology 0.510± 0.079 0.050
Services 0.505± 0.067 0.037
Healthcare 0.504± 0.066 -0.005
Utilities 0.500± 0.090 0.003

Table B.10: Sentiment+Emotion: Top 10 Performers (by Directional Accuracy)
Ticker Sector Accuracy MCC
PEP Consumer Goods 0.705 0.410
SLB Basic Materials 0.675 0.232
BA Industrial Goods 0.654 0.317
CELG Healthcare 0.644 0.369
MSFT Technology 0.608 0.199
GOOG Technology 0.605 0.213
MO Consumer Goods 0.600 0.190
PM Consumer Goods 0.591 0.058
AAPL Consumer Goods 0.590 0.233
MCD Services 0.586 0.210

Table B.11: Stance+Emotion: Performance by Sector
Sector Accuracy MCC
Consumer Goods 0.594± 0.024 0.179
Financial 0.553± 0.054 0.082
Utilities 0.544± 0.008 0.079
Services 0.517± 0.069 0.043
Healthcare 0.511± 0.059 0.006
Basic Materials 0.511± 0.178 0.057
Technology 0.500± 0.087 0.011
Industrial Goods 0.490± 0.061 0.030

40

Table B.12: Stance+Emotion: Top 10 Performers (by Directional Accuracy)
Ticker Sector Accuracy MCC
SLB Basic Materials 0.775 0.498
MA Financial 0.659 0.285
GOOG Technology 0.645 0.290
ABBV Healthcare 0.638 0.297
HD Services 0.633 0.192
PG Consumer Goods 0.625 0.166
MO Consumer Goods 0.622 0.250
CVX Basic Materials 0.604 0.200
PEP Consumer Goods 0.591 0.183
KO Consumer Goods 0.579 0.258

Table B.13: Stance+Sentiment+Emotion: Performance by Sector
Sector Accuracy MCC
Consumer Goods 0.575± 0.049 0.121
Industrial Goods 0.538± 0.097 0.118
Utilities 0.535± 0.140 0.082
Services 0.529± 0.069 0.088
Financial 0.523± 0.054 0.104
Technology 0.499± 0.086 0.058
Healthcare 0.477± 0.074 -0.059
Basic Materials 0.475± 0.109 -0.053

Table B.14: Stance+Sentiment+Emotion: Top 10 Performers (by Directional Ac-
curacy)

Ticker Sector Accuracy MCC
BA Industrial Goods 0.712 0.424
GOOG Technology 0.684 0.361
PEP Consumer Goods 0.659 0.319
D Utilities 0.634 0.279
DIS Services 0.633 0.238
UPS Services 0.622 0.253
CVX Basic Materials 0.604 0.200
V Financial 0.596 0.202
PM Consumer Goods 0.591 0.058
CAT Industrial Goods 0.588 0.265

41

	Introduction
	Motivation
	Purpose
	Report Structure

	Background
	Framing the Stock Prediction Task
	Data Modalities and Model Selection

	Deep Learning: long short-term memory (LSTM)
	Natural Language Processing: BERT
	Staking Strategies: Kelly Criterion
	Statistical Inference: Isotonic Regression
	Project Aims
	Research Objectives
	Research Questions

	Design & Implementation
	Design Rationale & Architecture
	Data Acquisition and Pre-processing
	Dataset Selection
	Dataset Pre-processing

	Feature Engineering
	Technical Indicator Generation from Stock Data
	NLP Feature Extraction from Social Media

	Final Dataset
	Model Evaluation and Metric Tracking
	Investment Simulation Pipeline
	Dynamic Data Handling and Robustness
	Per-Asset Modeling and Probability Calibration
	Portfolio Construction and Capital Allocation
	Simulation Loop and Performance Tracking

	Implementation Details
	Libraries and Modules by Functionality

	Experiments & Results
	Evaluation metrics
	Model Comparison
	Impact of feature selection in model performance
	Model comparison to baseline and previous work
	Simulation performance

	Conclusions
	Achievements
	Limitations and Future work

	Source Code
	Additional Tables

